Seat	Number		T	T
		1-0-1		

DAGDU-22

BP-106 RMT: Remedial Mathematics

(711162)

Total Pages: 3]

Time: 11/2 Hours

Max. Marks: 35

Note: (1) Do not write anything on question paper except Seat No.

- Graph or diagram should be drawn with the black ink pen being (2)used for writing paper or black HB pencil.
- Students should note, no supplement will be provided. (3)
- Simple non-programmable calculator is allowed. (4)
- (5) Log table is allowed.
- 1. Attempt any one of the following:

(i) Differentiate the following functions with respect to \boldsymbol{x} with first principle:

$$f(x) = \log \sin x$$

- (ii) Evaluate $\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$
- (i) $y = \lim_{x \to \infty} \left(1 + \frac{P}{x}\right)^x$ [From 1^{∞}]
 - (ii) Evaluate:

$$8^{\log_2 3\sqrt{121} \, + \frac{1}{3}}$$

(iii) If A and B are symmetric matrices, the AB is symmetric if AB = BA.

25

- (iv) If $f(x) = \frac{2x}{1+x^2}$, prove that $f(\tan \theta) = \sin 2\theta$.
- (v) Resolve $\frac{1}{1+x^3}$ into partial fractions.
- 2. Attempt any five:

At. le

(1)
$$L^{-1} \begin{cases} \frac{5s+3}{(s-1)(s^2+2s+5)} \end{cases}$$
 evaluate

- (2) (i) $\frac{dy}{dx} = 3x^2 + \frac{1}{x}$
 - (ii) Solve the following differential equation:

$$\frac{dy}{dx} + 2x = 3e^x$$

- (3) P and Q are two points whose co-ordinates are $(at^2, 2at)$ and $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$ respectively and S(a, 0) is the point, show that $\frac{1}{SP} + \frac{1}{SQ}$ is independent of t.
- (4) If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$, find (A 2I) (A 3I).
- (5) If $y = \cot x$, then $\frac{dy}{dx} = \frac{d}{dx} (\cot x) = \csc^2 x$.

DAGDU-22

2

- (6) Without expanding, show that $\begin{bmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{bmatrix} = (x y) (y z)$
- (7) A straight line, drawn, through the point A(2, 1) makes an angle $\frac{\pi}{4}$ with the +ve direction of X-axis & intersects another line x + 2y + 1 = 0 at a point B. Find the length of AB.

DAGDU-22

3